37%
Wave Propagation in Solids and Fluids

Wave Propagation in Solids and Fluids

          
5
4
3
2
1

Available


Premium quality
Premium quality
Bookswagon upholds the quality by delivering untarnished books. Quality, services and satisfaction are everything for us!
Easy Return
Easy return
Not satisfied with this product! Keep it in original condition and packaging to avail easy return policy.
Certified product
Certified product
First impression is the last impression! Address the book’s certification page, ISBN, publisher’s name, copyright page and print quality.
Secure Checkout
Secure checkout
Security at its finest! Login, browse, purchase and pay, every step is safe and secured.
Money back guarantee
Money-back guarantee:
It’s all about customers! For any kind of bad experience with the product, get your actual amount back after returning the product.
On time delivery
On-time delivery
At your doorstep on time! Get this book delivered without any delay.
Quantity:
Add to Wishlist

About the Book

The purpose of this volume is to present a clear and systematic account of the mathematical methods of wave phenomena in solids, gases, and water that will be readily accessible to physicists and engineers. The emphasis is on developing the necessary mathematical techniques, and on showing how these mathematical concepts can be effective in unifying the physics of wave propagation in a variety of physical settings: sound and shock waves in gases, water waves, and stress waves in solids. Nonlinear effects and asymptotic phenomena will be discussed. Wave propagation in continuous media (solid, liquid, or gas) has as its foundation the three basic conservation laws of physics: conservation of mass, momentum, and energy, which will be described in various sections of the book in their proper physical setting. These conservation laws are expressed either in the Lagrangian or the Eulerian representation depending on whether the boundaries are relatively fixed or moving. In any case, these laws of physics allow us to derive the "field equations" which are expressed as systems of partial differential equations. For wave propagation phenomena these equations are said to be "hyperbolic" and, in general, nonlinear in the sense of being "quasi linear" . We therefore attempt to determine the properties of a system of "quasi linear hyperbolic" partial differential equations which will allow us to calculate the displacement, velocity fields, etc.

Table of Contents:
1 Oscillatory Phenomena.- 1.1. Harmonic Motion.- 1.2. Forced Oscillations.- 1.3. Combination of Wave Forms.- 1.4. Oscillations in Two Dimensions.- 1.5. Coupled Oscillations.- 1.6. Lagrange’s Equations of Motion.- 1.7. Formulation of the Problem of Small Oscillations for Conservative Systems.- 1.8. The Eigenvalue Equation.- 1.9. Similarity Transformation and Normal Coordinates.- 2 The Physics of Wave Propagation.- 2.1. The Conservation Laws of Physics.- 2.2. The Nature of Wave Propagation.- 2.3. Discretization.- 2.4. Sinusoidal Wave Propagation.- 2.5. Derivation of the Wave Equation.- 2.6. The Superposition Principle, Interference Phenomena.- 2.7. Concluding Remarks.- 3 Partial Differential Equations of Wave Propagation.- 3.1. Wave Equation as an Equivalent First-Order System.- 3.2. Method of Characteristics for a Single First-Order Quasilinear Partial Differential Equation.- 3.3. Second-Order Quasilinear Partial Differential Equation.- 3.4. Method of Characteristics for Second-Order Partial Differential Equations.- 3.5. Propagation of Discontinuities.- 3.6. Canonical Form for Second-Order Partial Differential Equations with Constant Coefficients.- 3.7. Conservation Laws, Weak Solutions.- 3.8. Divergence Theorem, Adjoint Operator, Green’s Identity, Riemann’s Method.- 4 Transverse Vibrations of Strings.- 4.1. Solution of the Wave Equation, Characteristic Coordinates.- 4.2. D’Alembert’s Solution.- 4.3. Nonhomogeneous Wave Equation.- 4.4. Mixed Initial Value and Boundary Value Problem, Finite String.- 4.5. Finite or Lagrange Model for Vibrating String.- 5 Water Waves.- 5.1. Conservation Laws.- 5.2. Potential Flow.- 5.3. Two-Dimensional Flow, Complex Variables.- 5.4. The Drag Force Past a Body in Potential Flow.- 5.5. Energy Flux.- 5.6. Small Amplitude Gravity Waves.- 5.7. Boundary Conditions.- 5.8. Formulation of a Typical Surface Wave Problem.- 5.9. Simple Harmonic Oscillations in Water at Constant Depth.- 5.10. The Solitary Wave.- 5.11. Approximation Theories.- 6 Sound Waves.- 6.1. Linearization of the Conservation Laws.- 6.2. Plane Waves.- 6.3. Energy and Momentum.- 6.4. Reflection and Refraction of Sound Waves.- 6.5. Sound Wave Propagation in a Moving Medium.- 6.6. Spherical Sound Waves.- 6.7. Cylindrical Sound Waves.- 6.8. General Solution of the Wave Equation.- 6.9. Huyghen’s Principle.- 7 Fluid Dynamics.- I. Inviscid Fluids.- 7.1. One-Dimensional Compressible Inviscid Flow.- 7.2. Two-Dimensional Steady Flow.- 7.3. Shock Wave Phenomena.- II. Viscous Fluids.- 7.4. Viscosity, Elementary Considerations.- 7.5. Conservation Laws for a Viscous Fluid.- 7.6. Flow in a Pipe, Poiseuille Flow.- 7.7. Dimensional Considerations.- 7.8. Stokes’s Flow.- 7.9. Oscillatory Motion.- 7.10. Potential Flow.- 8 Wave Propagation in Elastic Media.- Historical Introduction to Wave Propagation.- 8.1. Fundamental Concepts of Elasticity.- 8.2. Equations of Motion for the Stress Components.- 8.3. Equations of Motion for the Displacement, Navier Equations.- 8.4. Propagation of a Plane Elastic Wave.- 8.5. Spherically Symmetric Waves.- 8.6. Reflection of Plane Waves at a Free Surface.- 8.7. Surface Waves, Rayleigh Waves.- 9 Variational Methods in Wave Phenomena.- 9.1. Principle of Least Time.- 9.2. One-Dimensional Treatment, Euler’s Equation.- 9.3. Euler’s Equations for the Two-Dimensional Case.- 9.4. Generalization to Functional with More Than One Dependent Variable.- 9.5. Hamilton’s Variational Principle.- 9.6. Lagrange’s Equations of Motion.- 9.7. Principle of Virtual Work.- 9.8. Transformation to Generalized Coordinates.- 9.9. Rayleigh’s Dissipation Function.- 9.10. Hamilton’s Equations of Motion.- 9.11. Cyclic Coordinates.- 9.12. Lagrange’s Equations of Motion for a Continuum.- 9.13. Hamilton’s Equations of Motion for a Continuum.- 9.14. Hamilton-Jacobi Theory.- 9.15. Characteristic Theory in Relation to Hamilton-Jacobi Theory.- 9.16. Principle of Least Action.- 9.17. Hamilton-Jacobi Theory and Wave Propagation.- 9.18. Application to Quantum Mechanics.-9.19. Asymptotic Phenomena.


Best Sellers


Product Details
  • ISBN-13: 9781461283904
  • Publisher: Springer-Verlag New York Inc.
  • Publisher Imprint: Springer-Verlag New York Inc.
  • Edition: Softcover reprint of the original 1st ed. 1988
  • Language: English
  • Returnable: Y
  • Spine Width: 21 mm
  • Width: 155 mm
  • ISBN-10: 1461283906
  • Publisher Date: 23 Sep 2011
  • Binding: Paperback
  • Height: 235 mm
  • No of Pages: 386
  • Series Title: English
  • Weight: 557 gr


Similar Products

How would you rate your experience shopping for books on Bookswagon?

Add Photo
Add Photo

Customer Reviews

REVIEWS           
Click Here To Be The First to Review this Product
Wave Propagation in Solids and Fluids
Springer-Verlag New York Inc. -
Wave Propagation in Solids and Fluids
Writing guidlines
We want to publish your review, so please:
  • keep your review on the product. Review's that defame author's character will be rejected.
  • Keep your review focused on the product.
  • Avoid writing about customer service. contact us instead if you have issue requiring immediate attention.
  • Refrain from mentioning competitors or the specific price you paid for the product.
  • Do not include any personally identifiable information, such as full names.

Wave Propagation in Solids and Fluids

Required fields are marked with *

Review Title*
Review
    Add Photo Add up to 6 photos
    Would you recommend this product to a friend?
    Tag this Book
    Read more
    Does your review contain spoilers?
    What type of reader best describes you?
    I agree to the terms & conditions
    You may receive emails regarding this submission. Any emails will include the ability to opt-out of future communications.

    CUSTOMER RATINGS AND REVIEWS AND QUESTIONS AND ANSWERS TERMS OF USE

    These Terms of Use govern your conduct associated with the Customer Ratings and Reviews and/or Questions and Answers service offered by Bookswagon (the "CRR Service").


    By submitting any content to Bookswagon, you guarantee that:
    • You are the sole author and owner of the intellectual property rights in the content;
    • All "moral rights" that you may have in such content have been voluntarily waived by you;
    • All content that you post is accurate;
    • You are at least 13 years old;
    • Use of the content you supply does not violate these Terms of Use and will not cause injury to any person or entity.
    You further agree that you may not submit any content:
    • That is known by you to be false, inaccurate or misleading;
    • That infringes any third party's copyright, patent, trademark, trade secret or other proprietary rights or rights of publicity or privacy;
    • That violates any law, statute, ordinance or regulation (including, but not limited to, those governing, consumer protection, unfair competition, anti-discrimination or false advertising);
    • That is, or may reasonably be considered to be, defamatory, libelous, hateful, racially or religiously biased or offensive, unlawfully threatening or unlawfully harassing to any individual, partnership or corporation;
    • For which you were compensated or granted any consideration by any unapproved third party;
    • That includes any information that references other websites, addresses, email addresses, contact information or phone numbers;
    • That contains any computer viruses, worms or other potentially damaging computer programs or files.
    You agree to indemnify and hold Bookswagon (and its officers, directors, agents, subsidiaries, joint ventures, employees and third-party service providers, including but not limited to Bazaarvoice, Inc.), harmless from all claims, demands, and damages (actual and consequential) of every kind and nature, known and unknown including reasonable attorneys' fees, arising out of a breach of your representations and warranties set forth above, or your violation of any law or the rights of a third party.


    For any content that you submit, you grant Bookswagon a perpetual, irrevocable, royalty-free, transferable right and license to use, copy, modify, delete in its entirety, adapt, publish, translate, create derivative works from and/or sell, transfer, and/or distribute such content and/or incorporate such content into any form, medium or technology throughout the world without compensation to you. Additionally,  Bookswagon may transfer or share any personal information that you submit with its third-party service providers, including but not limited to Bazaarvoice, Inc. in accordance with  Privacy Policy


    All content that you submit may be used at Bookswagon's sole discretion. Bookswagon reserves the right to change, condense, withhold publication, remove or delete any content on Bookswagon's website that Bookswagon deems, in its sole discretion, to violate the content guidelines or any other provision of these Terms of Use.  Bookswagon does not guarantee that you will have any recourse through Bookswagon to edit or delete any content you have submitted. Ratings and written comments are generally posted within two to four business days. However, Bookswagon reserves the right to remove or to refuse to post any submission to the extent authorized by law. You acknowledge that you, not Bookswagon, are responsible for the contents of your submission. None of the content that you submit shall be subject to any obligation of confidence on the part of Bookswagon, its agents, subsidiaries, affiliates, partners or third party service providers (including but not limited to Bazaarvoice, Inc.)and their respective directors, officers and employees.

    Accept

    New Arrivals


    Inspired by your browsing history


    Your review has been submitted!

    You've already reviewed this product!
    ASK VIDYA